Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613458

RESUMO

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.

2.
Eur J Pharmacol ; 969: 176466, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431243

RESUMO

The chronic use of the novel synthetic cathinone mexedrone, like other psychoactive drugs, can be considered addictive, with a high potential for abuse and the ability to cause psychological dependence in certain users. However, little is known about the neurobehavioral effects of mexedrone in association with its potential for abuse. We investigated the abuse potential for mexedrone abuse through multiple behavioral tests. In addition, serotonin transporter (SERT) levels were measured in the synaptosome of the dorsal striatum, and serotonin (5-HT) levels were measured in the dorsal striatum of acute mexedreone (50 mg/kg)-treated mice. To clarify the neuropharmacological mechanisms underlying the locomotor response of mexedrone, the 5-HT2A receptor antagonist M100907 (0.5 or 1.0 mg/kg) was administered prior to the acute injection of mexedrone in the locomotor activity experiment in mice. Mexedrone (10-50 mg/kg) produced a significant place preference in mice and mexedrone (0.1-0.5 mg/kg/infusion) maintained self-administration behavior in rats in a dose-dependent manner. In the drug discrimination experiment, mexedrone (5.6-32 mg/kg) was fully substituted for the discriminative stimulus effects of cocaine in rats. Mexedrone increased locomotor activity, and these effects were reversed by pretreatment with M100907. Acute mexedrone significantly increased c-Fos expression in the dorsal striatum and decreased SERT levels in the synaptosome of the dorsal striatum of mice, resulting in an elevation of 5-HT levels. Taken together, our results provide the possibility that mexedrone has abuse potential, which might be mediated, at least in part, by the activation of the serotonergic system in the dorsal striatum.


Assuntos
Cocaína , Fluorbenzenos , Metanfetamina/análogos & derivados , Piperidinas , Catinona Sintética , Ratos , Camundongos , Masculino , Animais , Ratos Sprague-Dawley , Serotonina/metabolismo , Cocaína/farmacologia , Relação Dose-Resposta a Droga
3.
Clin Genet ; 103(2): 167-178, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250278

RESUMO

ZC4H2 (MIM# 300897) is a nuclear factor involved in various cellular processes including proliferation and differentiation of neural stem cells, ventral spinal patterning and osteogenic and myogenic processes. Pathogenic variants in ZC4H2 have been associated with Wieacker-Wolff syndrome (MIM# 314580), an X-linked neurodevelopmental disorder characterized by arthrogryposis, development delay, hypotonia, feeding difficulties, poor growth, skeletal abnormalities, and dysmorphic features. Zebrafish zc4h2 null mutants recapitulated the human phenotype, showed complete loss of vsx2 expression in brain, and exhibited abnormal swimming and balance problems. Here we report 7 new patients (four males and three females) with ZC4H2-related disorder from six unrelated families. Four of the 6 ZC4H2 variants are novel: three missense variants, designated as c.142T>A (p.Tyr48Asn), c.558G>A (p.Met186Ile) and c.602C>T (p.Pro201Leu), and a nonsense variant, c.618C>A (p.Cys206*). Two variants were previously reported : a nonsense variant c.199C>T (p.Arg67*) and a splice site variant (c.225+5G>A). Five patients were on the severe spectrum of clinical findings, two of whom had early death. The male patient harboring the p.Met186Ile variant and the female patient that carries the p.Pro201Leu variant have a relatively mild phenotype. Of note, 4/7 patients had a tethered cord that required a surgical repair. We also demonstrate and discuss previously under-recognized phenotypic features including sleep apnea, arrhythmia, hypoglycemia, and unexpected early death. To study the effect of the missense variants, we performed microinjection of human ZC4H2 wild-type or variant mRNAs into zc4h2 null mutant zebrafish embryos. The p.Met186Ile mRNA variant was able to partially rescue vsx2 expression while p.Tyr48Asn and p.Pro201Leu mRNA variants were not. However, swimming and balance problems could not be rescued by any of these variants. These results suggest that the p.Met186Ile is a hypomorphic allele. Our work expands the genotypes and phenotypes associated with ZC4H2-related disorder and demonstrates that the zebrafish system is a reliable method to determine the pathogenicity of ZC4H2 variants.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Defeitos do Tubo Neural , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Alelos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Defeitos do Tubo Neural/genética , Proteínas Nucleares/genética , Fenótipo , Prevalência , Peixe-Zebra/genética
4.
Front Pharmacol ; 13: 997701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225577

RESUMO

MicroRNA (miRNA)-mediated striatal gene regulation may play an important role in methamphetamine (METH) addiction. This study aimed to identify changes in novel miRNAs and their target genes during METH self-administration and investigate their roles in METH-induced locomotion. RNA sequencing analysis revealed that mir-183-5p was upregulated in the striatum of METH self-administered rats, and target gene prediction revealed that the glucocorticoid receptor (GR) gene, Nr3c1, was a potential target gene for mir-183-5p. We confirmed that single and repeated METH administrations increased METH-induced locomotion and plasma corticosterone levels in rats. Additionally, increased miR-185-5p expression and decreased GR gene expression were observed only in the repeated-METH-injection group but not in the single-injection group. We then investigated the effects of miR-183-5p on METH-induced locomotion using a miR-183-5p mimic and inhibitor. Injection of a mir-183-5p mimic in the striatum of rats attenuated METH-induced locomotion, whereas injection of a miR-183-5p inhibitor enhanced the locomotor activity in METH-administered rats. Furthermore, the miR-183-5p mimic reduced the phosphorylation of tyrosine hydroxylase (TH) whereas the inhibitor increased it. Taken together, these results indicate that repeated METH injections increase striatal miR-183-5p expression and regulate METH-induced locomotion by regulating GR expression in rats, thereby suggesting a potential role of miR-183-5p as a novel regulator of METH-induced locomotion.

5.
Pharmacol Biochem Behav ; 221: 173484, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36272636

RESUMO

Synthetic cathinones are chemical derivatives of cathinone, a structural analog to amphetamine. It has been shown that synthetic cathinones have abuse potentials similar to psychomotor stimulants such as amphetamine and induce neuroinflammation. Among the novel synthetic cathinones, α-pyrrolidinopentiothiophenone (α-PVT) has been known to produce rewarding and reinforcing effects in rodent models. However, it has not yet been determined whether α-PVT induces neuroinflammation in vivo. In the present study, mice were exposed to repeated saline or α-PVT (20 mg/kg, intraperitoneally) for 7 days to test changes in locomotor activity and neuroinflammation-related factors in the striatum of mice. Repeated administration of α-PVT significantly induced locomotor sensitization. In addition, repeated α-PVT administration significantly increased the number of microglial cells, accompanied by marked increases in TLR1, TLR4, TLR6, and TLR7 mRNA levels in the striatum of mice. Furthermore, acute or repeated α-PVT administration increased the levels of phosphorylated NF-κB, ERK, p38, and JNK MAPK activation and repeated α-PVT, but not acute, increased the levels of TNF-α and IL-6 mRNA in the striatum of mice. Finally, systemic administration of TAK-242 (5 mg/kg, i.p.) or MPLA (50 µg/kg, i.p.), each an inhibitor or activator of TLR4, did not change α-PVT-induced behavioral sensitization in mice. These results suggest that the activation of TLR4 by repeated α-PVT administration may lead to neuroinflammation via TLR-mediated NF-κB and MAPK signaling pathways and the production of TNF-α and IL-6 in the striatum of mice, at least without the regulation of behavioral sensitization.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Camundongos , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa , Interleucina-6 , Transdução de Sinais , RNA Mensageiro/genética
6.
Pharmacol Biochem Behav ; 220: 173469, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36183870

RESUMO

Nicotine, the primary addictive substance in tobacco, produces the psychomotor, rewarding, and reinforcing effects of tobacco dependence by stimulating nicotinic acetylcholine receptors (nAChRs) in the brain. The present study determined that α4ß2 nAChRs regulate locomotor sensitization by altering dopamine concentration in the nucleus accumbens (NAc) after systemic challenge exposure to whole cigarette smoke condensate (WCSC). Rats were administered subcutaneous injection of WCSC (0.2 mg/kg nicotine/day) for 7 consecutive days and then re-exposed to WCSC after 3 days of withdrawal. Challenge exposure to WCSC significantly increased locomotor activity. This increase was decreased by the subcutaneous injection of the α4ß2 nAChR antagonist, DHßE (3 mg/kg), but not by the intraperitoneal injection of the α7 nAChR antagonist, MLA (5 mg/kg). In parallel with a decrease in locomotor activity, blockade of α4ß2 nAChRs with DHßE decreased dopamine concentration in the NAc which was elevated by challenge exposure to WCSC. These findings suggest that challenge WCSC leads to the expression of locomotor sensitization by elevating dopamine concentration via stimulation of α4ß2 nAChRs expressed in neurons of the NAc in rats.


Assuntos
Fumar Cigarros , Receptores Nicotínicos , Animais , Dopamina/metabolismo , Nicotina/farmacologia , Antagonistas Nicotínicos/farmacologia , Núcleo Accumbens/metabolismo , Ratos , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
7.
Nicotine Tob Res ; 24(8): 1201-1207, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35323980

RESUMO

INTRODUCTION: Nicotine increases reinforcing effects of cigarette smoking by upregulating glutamate and dopamine releases via stimulation of nicotinic acetylcholine receptors (nAChRs) in the dorsal striatum (CPu). The present study was conducted to evaluate whether non-nicotine substances in cigarette smoke potentiate nicotine-induced behaviors by increasing glutamate and dopamine concentrations in the CPu. AIMS AND METHODS: Changes in the levels of glutamate and dopamine in the CPu were analyzed using a glutamate colorimetric assay and dopamine enzyme-linked immunosorbent assay, respectively, after repeated administration of nicotine or whole cigarette smoke condensate (WCSC) in male Sprague-Dawley rats. Changes in locomotion and drug-taking behavior were analyzed using the measurements of locomotor activity and self-administration under a fixed ratio 1 schedule in response to repeated administration of nicotine or WCSC. RESULTS: Repeated subcutaneous (s.c.) injections of nicotine (0.25 mg/kg/day) for 7 consecutive days significantly increased the levels of glutamate and dopamine in the CPu. Similar results were obtained from repeated injections of WCSC (0.25 mg/kg nicotine/day, s.c.) extracted from 3R4F Kentucky reference cigarettes. Parallel with the increases in the neurotransmitter levels in the CPu, both nicotine and WCSC increased locomotor activity and self-administration (0.03 mg/kg nicotine/infusion). However, repeated injections of WCSC did not change the nicotine-induced increases in neurotransmitter levels, locomotor activity, and self-administration. CONCLUSIONS: Nicotine rather than non-nicotine substances in WCSC play a major role in potentiating behavioral sensitization and drug-taking behavior via elevation of glutamate and dopamine concentrations in the CPu of rats. IMPLICATIONS: WCSC does not augment the nicotine-induced increases in behavioral sensitization, drug-taking behavior, and glutamate and dopamine concentrations, suggesting that non-nicotine substances do not potentiate the nicotine-induced behaviors by increasing the concentrations of the neurotransmitters in the CPu. These findings imply that nicotine, but not non-nicotine substances in WCSC, may be a major contributor that induces tobacco dependence in rats.


Assuntos
Dopamina , Nicotina , Animais , Glutamatos , Masculino , Nicotina/farmacologia , Ratos , Ratos Sprague-Dawley
8.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502393

RESUMO

Beta-phenylethylamine (ß-PEA) is a well-known and widespread endogenous neuroactive trace amine found throughout the central nervous system in humans. In this study, we demonstrated the effects of ß-PEA on psychomotor, rewarding, and reinforcing behaviors and affective state using the open-field test, conditioned place preference (CPP), self-administration, and ultrasonic vocalizations (USVs) paradigms. We also investigated the role of the dopamine (DA) D1 receptor in the behavioral effects of ß-PEA in rodents. Using enzyme-linked immunosorbent assay (ELISA) and Western immunoblotting, we also determined the DA concentration and the DA-related protein levels in the dorsal striatum of mice administered with acute ß-PEA. The results showed that acute ß-PEA increased stereotypic behaviors such as circling and head-twitching responses in mice. In the CPP experiment, ß-PEA increased place preference in mice. In the self-administration test, ß-PEA significantly enhanced self-administration during a 2 h session under fixed ratio (FR) schedules (FR1 and FR3) and produced a higher breakpoint during a 6 h session under progressive ratio schedules of reinforcement in rats. In addition, acute ß-PEA increased 50-kHz USV calls in rats. Furthermore, acute ß-PEA administration increased DA concentration and p-DAT and TH expression in the dorsal striatum of mice. Finally, pretreatment with SCH23390, a DA D1 receptor antagonist, attenuated ß-PEA-induced circling behavior and ß-PEA-taking behavior in rodents. Taken together, these findings suggest that ß-PEA has rewarding and reinforcing effects and psychoactive properties, which induce psychomotor behaviors and a positive affective state by activating the DA D1 receptor in the dorsal striatum.


Assuntos
Fenetilaminas/farmacologia , Receptores de Dopamina D1/metabolismo , Afeto/efeitos dos fármacos , Afeto/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Dopamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenetilaminas/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Receptores de Dopamina D1/efeitos dos fármacos , Reforço Psicológico , Recompensa , Autoadministração
9.
Hum Mol Genet ; 30(5): 331-342, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33517449

RESUMO

Leukodystrophy with vanishing white matter (VWM), also called Childhood Ataxia with Central Nervous System Hypomyelination, is caused by mutations in the subunits of the eukaryotic translation initiation factor, EIF2B1, EIF2B2, EIF2B3, EIF2B4 or EIF2B5. However, little is known regarding the underlying pathogenetic mechanisms, and there is no curative treatment for VWM. In this study, we established the first EIF2B3 animal model for VWM disease in vertebrates by CRISPR mutagenesis of the highly conserved zebrafish ortholog eif2b3. Using CRISPR, we generated two mutant alleles in zebrafish eif2b3, 10- and 16-bp deletions, respectively. The eif2b3 mutants showed defects in myelin development and glial cell differentiation, and increased expression of genes in the induced stress response pathway. Interestingly, we also found ectopic angiogenesis and increased VEGF expression. Ectopic angiogenesis in the eif2b3 mutants was reduced by the administration of VEGF receptor inhibitor SU5416. Using the eif2b3 mutant zebrafish model together with in silico protein modeling analysis, we demonstrated the pathogenicity of 18 reported mutations in EIF2B3, as well as of a novel variant identified in a 19-month-old female patient: c.503 T > C (p.Leu168Pro). In summary, our zebrafish mutant model of eif2b3 provides novel insights into VWM pathogenesis and offers rapid functional analysis of human EIF2B3 gene variants.


Assuntos
Fator de Iniciação 2B em Eucariotos/genética , Regulação da Expressão Gênica no Desenvolvimento , Leucoencefalopatias/genética , Bainha de Mielina/genética , Neovascularização Fisiológica , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Alelos , Animais , Diferenciação Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Fator de Iniciação 2B em Eucariotos/química , Feminino , Técnicas de Inativação de Genes , Humanos , Lactente , Leucoencefalopatias/metabolismo , Modelos Moleculares , Bainha de Mielina/metabolismo , Neovascularização Fisiológica/genética , Conformação Proteica , Deleção de Sequência , Estresse Fisiológico , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Brain Sci ; 10(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967122

RESUMO

In this study we investigated the mitigating effects of Liriope platyphylla Wang et Tang extract on behavioral sensitization and the quantification of its major compounds. The extract of L. platyphylla reduces the expression of tyrosine hydroxylase (TH) protein, which is increased by nicotine, back to normal levels, and increases the expression of dopamine transporter (DAT) protein, which is reduced by nicotine, back to normal levels in PC12 cells. In this study, rats received nicotine (0.4 mg/kg, subcutaneously) only for seven days and then received extract of L. platyphylla (200 or 400 mg/kg, oral) 1 h prior to nicotine administration for an additional seven days. The extract of L. platyphylla reduced locomotor activity compared to the nicotine control group in rats. The extract of L. platyphylla significantly attenuated the repeated nicotine-induced DAT protein expression in the nucleus accumbens (NAc), but there was no effect on increased TH protein expression in the dorsal striatum. These findings suggest that L. platyphylla extract has a mitigating effect on nicotine-induced behavioral sensitization by modulating DAT protein expression in the NAc. For quality control of L. plathyphylla, spicatoside A and D, which are saponin compounds, were quantified in the L. platyphylla extract. The amounts of spicatoside A and D in L. platyphylla extract obtained from ultra-high-performance liquid chromatography with tandem mass spectrometry were 0.148 and 0.272 mg/g, respectively. The identification of these compounds in L. platyphylla, which can be used for quality control, provides important information for the development of drugs to treat nicotine dependence.

11.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610694

RESUMO

The dissociative anesthetic phencyclidine (PCP) and PCP derivatives, including 4'-F-PCP, are illegally sold and abused worldwide for recreational and non-medical uses. The psychopharmacological properties and abuse potential of 4'-F-PCP have not been fully characterized. In this study, we evaluated the psychomotor, rewarding, and reinforcing properties of 4'-F-PCP using the open-field test, conditioned place preference (CPP), and self-administration paradigms in rodents. Using Western immunoblotting, we also investigated the expression of dopamine (DA)-related proteins and DA-receptor-mediated downstream signaling cascades in the nucleus accumbens (NAc) of 4'-F-PCP-self-administering rats. Intraperitoneal administration of 10 mg/kg 4'-F-PCP significantly increased locomotor and rearing activities and increased CPP in mice. Intravenous administration of 1.0 mg/kg/infusion of 4'-F-PCP significantly enhanced self-administration during a 2 h session under fixed ratio schedules, showed a higher breakpoint during a 6 h session under progressive ratio schedules of reinforcement, and significantly altered the expression of DA transporter and DA D1 receptor in the NAc of rats self-administering 1.0 mg/kg 4'-F-PCP. Additionally, the expression of phosphorylated (p) ERK, pCREB, c-Fos, and FosB/ΔFosB in the NAc was significantly enhanced by 1.0 mg/kg 4'-F-PCP self-administration. Taken together, these findings suggest that 4'-F-PCP has a high potential for abuse, given its robust psychomotor, rewarding, and reinforcing properties via activation of DAergic neurotransmission and the downstream signaling pathways in the NAc.


Assuntos
Abuso de Fenciclidina/metabolismo , Fenciclidina/análogos & derivados , Fenciclidina/farmacologia , Animais , Comportamento Aditivo/fisiopatologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Fenciclidina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Reforço Psicológico , Recompensa , Autoadministração
12.
Zebrafish ; 16(3): 262-267, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31058587

RESUMO

The zebrafish has become an appropriate animal model in the analysis of numerous human brain disorders. A variety of neuropsychiatric conditions and neurodevelopmental disorders are comorbid with abnormal social behavior. Given the translational relevance of zebrafish, multidisciplinary studies employing behavioral, neurobiological, and molecular methods with this species may provide insights into human central nervous system (CNS) disorders. Many of these studies impinge upon our ability to properly induce and quantify the behavior of zebrafish, a relatively understudied aspect of this species. In this study, we investigate how the body size of conspecifics relative to that of the test subject influences social (shoaling) responses in zebrafish. We found a robust preference by wild-type (WT) test zebrafish toward big conspecifics, but not toward smaller conspecifics. Additionally, we tested an autism-relevant zebrafish knockout (KO) model. The dyrk1aa KO zebrafish showed impaired social preference compared with WT in the social behavior test. Our results confirm the effect of relative body size on social preference and that the social preference task developed for zebrafish may uncover the function of genes and biological mechanisms potentially associated with human CNS disorders.


Assuntos
Tamanho Corporal , Proteínas Quinases/genética , Comportamento Social , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Masculino , Estimulação Luminosa , Proteínas Quinases/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Dev Reprod ; 23(4): 385-390, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31993544

RESUMO

Upon gene inactivation in animal models, the zebrafish (Danio rerio) has become a useful model organism for many reasons, including the fact that it is amenable to various forms of genetic manipulation. Genome editing is a type of genetic engineering in which DNA is inserted, deleted, modified, or replaced in the genome of a living organism. Mainly, CRISPR (clustered regularly interspaced short palindromic repeats) Cas9 (CRISPR-associated protein 9) is a technology that enables geneticists to edit parts of the genome. In this study, we utilized this technology to generate an mmp15b mutant by using zebrafish as an animal model. MMP15 is the membrane-type MMP (MT-MMP) which is a recently identified matrix metalloproteinase (MMP) capable of degrading all kinds of extracellular matrix proteins as well as numerous bioactive molecules. Although the newly-established mmp15b zebrafish mutant didn't exhibit morphological phenotypes in the developing embryos, it might be further utilized to understand the role of MMP15 in liver-related diseases, such as liver fibrosis, and associated pathogeneses in humans.

15.
Artigo em Inglês | MEDLINE | ID: mdl-29958859

RESUMO

Social behavior is a fundamental aspect of our own species, a feature without which our society would not function. There are numerous human brain disorders associated with abnormal social behavior, among them are the autism spectrum disorders whose causal factors include a genetic component. Environmental factors, including drugs of abuse such as alcohol, also contribute to numerous abnormalities related to social behavior. Several such disorders have been modeled using laboratory animals. Perhaps one of the newest among them is the zebrafish. However, the paucity of standardized behavioral assays specifically developed for the zebrafish have hindered progress. Here, we present a newly developed zebrafish behavioral paradigm, the three-chamber social choice task. This task, which was adapted from a murine model, assesses sociality and social novelty preference in zebrafish in three phases: habituation, phase-I to evaluate sociality, and phase-II to quantify social novelty preference. Test fish are placed in the middle chamber, while conspecifics are introduced to the flanking chambers during phase-I and II. Both male and female zebrafish displayed sociality (preference for conspecifics) during phase-I and social novelty preference (preference for unfamiliar conspecifics) during phase-II. We found the paradigm to be able to detect both environmentally (alcohol) as well as genetically (targeted knock out of sam2) induced alterations of behavioral phenotypes. Although ethanol-treated fish displayed similar levels of sociality to those of control (not alcohol exposed) male and female zebrafish, they were found to exhibit significantly impaired social novelty preference, a finding compatible with altered motivational or perhaps mnemonic processes. Moreover, we found that knock out of sam2, previously shown to lead to emotional dysregulation, also disrupted social novelty preference, while leaving sociality relatively intact. We conclude that our novel behavioral paradigm is appropriate for the modeling and quantification of social behavior deficits in zebrafish.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Comportamento de Escolha , Etanol/toxicidade , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/genética , Mutação/genética , Comportamento Social , Aminopeptidases/genética , Animais , Animais Geneticamente Modificados , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Feminino , Masculino , Estatísticas não Paramétricas , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
16.
Mol Autism ; 8: 50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29021890

RESUMO

BACKGROUND: DYRK1A maps to the Down syndrome critical region at 21q22. Mutations in this kinase-encoding gene have been reported to cause microcephaly associated with either intellectual disability or autism in humans. Intellectual disability accompanied by microcephaly was recapitulated in a murine model by overexpressing Dyrk1a which mimicked Down syndrome phenotypes. However, given embryonic lethality in homozygous knockout (KO) mice, no murine model studies could present sufficient evidence to link Dyrk1a dysfunction with autism. To understand the molecular mechanisms underlying microcephaly and autism spectrum disorders (ASD), we established an in vivo dyrk1aa KO model using zebrafish. METHODS: We identified a patient with a mutation in the DYRK1A gene using microarray analysis. Circumventing the barrier of murine model studies, we generated a dyrk1aa KO zebrafish using transcription activator-like effector nuclease (TALEN)-mediated genome editing. For social behavioral tests, we have established a social interaction test, shoaling assay, and group behavior assay. For molecular analysis, we examined the neuronal activity in specific brain regions of dyrk1aa KO zebrafish through in situ hybridization with various probes including c-fos and crh which are the molecular markers for stress response. RESULTS: Microarray detected an intragenic microdeletion of DYRK1A in an individual with microcephaly and autism. From behavioral tests of social interaction and group behavior, dyrk1aa KO zebrafish exhibited social impairments that reproduce human phenotypes of autism in a vertebrate animal model. Social impairment in dyrk1aa KO zebrafish was further confirmed by molecular analysis of c-fos and crh expression. Transcriptional expression of c-fos and crh was lower than that of wild type fish in specific hypothalamic regions, suggesting that KO fish brains are less activated by social context. CONCLUSIONS: In this study, we established a zebrafish model to validate a candidate gene for autism in a vertebrate animal. These results illustrate the functional deficiency of DYRK1A as an underlying disease mechanism for autism. We also propose simple social behavioral assays as a tool for the broader study of autism candidate genes.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/psicologia , Síndrome de Down/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Comportamento Social , Animais , Comportamento Animal , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Criança , Análise Mutacional de DNA , Síndrome de Down/diagnóstico , Feminino , Técnicas de Inativação de Genes , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Fenótipo , Deleção de Sequência , Peixe-Zebra
17.
Fish Shellfish Immunol ; 34(5): 1390-4, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23470815

RESUMO

Zebrafish is considered as a versatile experimental animal for various research models from development to diseases. In this study, we report the development of transgenic zebrafish line named as Tg(EF1α:Kaede) that expresses translation elongation factor 1 subunit alpha (EF1α) promoter linked to a fluorescent protein (FP), Kaede for monitoring proliferating cells in during regeneration. It was revealed that about 1.4 kb 5'-flanking region of the EF1α was sufficient for its promoter activity. Expression of Kaede with a property of photo-conversion from green to red was detected in different embryonic stages as well as various organs such as brain, heart, pancreas, intestine, ovary, and fins of adult fish. Cell proliferation pattern during fin regeneration was monitored after amputation of Tg(EF1α:Kaede) caudal fin and results shown that this system is simple and efficient method for detecting proliferating cells during tissue regeneration. Developed Tg(EF1α:Kaede) line has potential to investigate the cell proliferation, regeneration, wound healing capacities after tissue damage and evaluate the therapeutic power of wound healing drugs.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Proliferação de Células , Fator 1 de Elongação de Peptídeos/metabolismo , Cicatrização , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Amputação Cirúrgica , Nadadeiras de Animais/embriologia , Nadadeiras de Animais/metabolismo , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Especificidade de Órgãos , Fator 1 de Elongação de Peptídeos/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...